Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 668
Filtrar
1.
Part Fibre Toxicol ; 21(1): 19, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600504

RESUMO

BACKGROUND: Recently, carbon quantum dots (CQDs) have been widely used in various fields, especially in the diagnosis and therapy of neurological disorders, due to their excellent prospects. However, the associated inevitable exposure of CQDs to the environment and the public could have serious severe consequences limiting their safe application and sustainable development. RESULTS: In this study, we found that intranasal treatment of 5 mg/kg BW (20 µL/nose of 0.5 mg/mL) CQDs affected the distribution of multiple metabolites and associated pathways in the brain of mice through the airflow-assisted desorption electrospray ionization mass spectrometry imaging (AFADESI-MSI) technique, which proved effective in discovery has proven to be significantly alerted and research into tissue-specific toxic biomarkers and molecular toxicity analysis. The neurotoxic biomarkers of CQDs identified by MSI analysis mainly contained aminos, lipids and lipid-like molecules which are involved in arginine and proline metabolism, biosynthesis of unsaturated fatty acids, and glutamine and glutamate metabolism, etc. as well as related metabolic enzymes. The levels or expressions of these metabolites and enzymes changed by CQDs in different brain regions would induce neuroinflammation, organelle damage, oxidative stress and multiple programmed cell deaths (PCDs), leading to neurodegeneration, such as Parkinson's disease-like symptoms. This study enlightened risk assessments and interventions of QD-type or carbon-based nanoparticles on the nervous system based on toxic biomarkers regarding region-specific profiling of altered metabolic signatures. CONCLUSION: These findings provide information to advance knowledge of neurotoxic effects of CQDs and guide their further safety evaluation.


Assuntos
Síndromes Neurotóxicas , Pontos Quânticos , Camundongos , Animais , Pontos Quânticos/toxicidade , Carbono/toxicidade , Carbono/química , Metabolômica/métodos , Encéfalo , Síndromes Neurotóxicas/etiologia , Biomarcadores
2.
Sci Total Environ ; 916: 170176, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38244620

RESUMO

Carbon nanoparticles, or carbon dots, can have many beneficial uses. However, we must consider whether they may have any potential negative side effects on wildlife or the ecosystem when these particles end up in wastewater. Early development stages of amphibians are particularly sensitive to contaminants, and exposure to carbon dots could disrupt their development and cause morbidity or death. Past studies have investigated short-term exposure to certain types of nanoparticles, but if these particles get into wastewater exposure may not be short term. Therefore, we tested whether chronic exposure to different concentrations of carbon dots affects the growth, metamorphosis, and telomere length of Cuban tree frog (Osteopilus septentrionalis) tadpoles. We exposed 12 groups of five tadpoles each to different concentrations of carbon dots and a control for three months and tracked survival, growth and metamorphosis. We used carbon nitride dots approximately 2 nm in size at concentrations of 0.01 mg/ml and 0.02 mg/ml, known to interrupt development in zebrafish embryos. After three months, we measured telomere length from tissue samples. We found no difference in tadpole survivorship, growth, development rate, or telomere length among any of the groups, suggesting that carbon dots at these concentrations do not disrupt tadpole development.


Assuntos
Ecossistema , Nitrilas , Águas Residuárias , Animais , Larva , Peixe-Zebra , Metamorfose Biológica , Anuros , Carbono/toxicidade , Telômero
3.
Sci Rep ; 14(1): 1530, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233477

RESUMO

Exposure to fine particulate matter (PM2.5) is associated with an increased risk of morbidity and mortality. In Europe, residential fuel combustion and road transport emissions contribute significantly to PM2.5. Toxicological studies indicate that PM2.5 from these sources is relatively more hazardous, owing to its high content of black and organic carbon. Here, we study the contribution of the emissions from these sectors to long-term exposure and excess mortality in Europe. We quantified the impact of anthropogenic carbonaceous aerosols on excess mortality and performed a sensitivity analysis assuming that they are twice as toxic as inorganic particles. We find that total PM2.5 from residential combustion leads to 72,000 (95% confidence interval: 48,000-99,000) excess deaths per year, with about 40% attributed to carbonaceous aerosols. Similarly, road transport leads to about 35,000 (CI 23,000-47,000) excess deaths per year, with 6000 (CI 4000-9000) due to carbonaceous particles. Assuming that carbonaceous aerosols are twice as toxic as other PM2.5 components, they contribute 80% and 37%, respectively, to residential fuel combustion and road transport-related deaths. We uncover robust national variations in the contribution of each sector to excess mortality and emphasize the importance of country-specific emission reduction policies based on national characteristics and sectoral shares.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Aerossóis/análise , Aerossóis/toxicidade , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Carbono/análise , Carbono/toxicidade , Monitoramento Ambiental , Europa (Continente) , Material Particulado/análise , Material Particulado/toxicidade
4.
Biochem Biophys Res Commun ; 690: 149311, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38016246

RESUMO

Carbon dots (CDs) are an emerging class of fluorescent quantum dot nanomaterials that have attracted considerable scientific attention for biomedical or bioimaging applications due to their physicochemical and biochemical properties. With the emergence of massive novel synthetic CDs applying to biomedical fields of science, evaluating their biosafety before any biological application is essential. However, there is no universal protocol or routine procedures for toxicity detection and biosafety assessment of CDs in general biological environments. Herein, we provide an ideal and fast operating system to detect the biotoxicity of CDs, which has been preliminary practiced. Briefly, the obtained CDs will be evaluated by in vitro cytotoxicity assay using cell counting kit-8, lactate dehydrogenase assay kit, and flow cytometry. Meanwhile, the model creature zebrafish is employed to perform in vivo evaluation by measuring body length, hatching rate, heart rate, and morphological observation. Our operating procedure condenses previous scattered biosafety detection methods into a rapid standard evaluation protocol that can be applied to early biotoxicity screening of CDs. This protocol will accelerate CDs biological exploitation and guide future industrialized biosafety assessment in large-scale applications.


Assuntos
Nanoestruturas , Pontos Quânticos , Animais , Carbono/toxicidade , Carbono/química , Peixe-Zebra , Pontos Quânticos/toxicidade , Pontos Quânticos/química , Corantes Fluorescentes/química
5.
Exp Eye Res ; 239: 109755, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128749

RESUMO

The threats of air pollution to human health have been gradually discovered, including its effects on eyes. The purpose of the study is to investigate the potential correlation between ocular surface exposure to black carbon and ocular surface structural damage as well as tear film dysfunction. To achieve this goal, 60 6-8-week-aged male BALB/C mice were randomly divided into 4 groups (n = 15). 0.5 mg/ml (group A), 1 mg/ml (group B), 5 mg/ml (group C) black carbon suspension droplets and PBS solution (group D) were used in the right eyes, 4 µl per time of three times per day. Tear break-up time, corneal fluorescein staining scores, and tear volume were assessed before treatment (day 0) and on days 4, 7, 10, and 14 after treatment. On day 14, the mice were sacrificed, and corneal and conjunctival tissues were collected for histological analysis. As the exposure time increased, there were no significant changes in the measured parameters from PBS-treated group of mice (P > 0.05). However, in the black carbon-treated group, there were significant decreases in tear film break-up time, significant increases in corneal fluorescein staining scores, and significant reductions in tear secretion (all P < 0.05). After 14 days, H&E staining of the corneal epithelium showed that in the PBS-treated group of mice, the corneal epithelial cells were neatly arranged, with no inflammatory cell infiltration, while in the black carbon-treated group, the corneal epithelium was significantly thickened, the basal cell arrangement was disrupted, the number of cell layers increased, and there was evidence of inflammatory cell infiltration. In the ultrastructure of the corneal epithelium, it could be observed that the black carbon-treated group had an increased amount of corneal epithelial cell detachment compared to the PBS-treated group, at the same time, the intercellular connections were looser, and there was a decrease in the number of microvilli and desmosomes in the black carbon-treated group. The results indicate that the ocular surface exposure to black carbon can result in a decrease in tear film stability and tear secretion in mice. Moreover, it can induce alterations in the corneal structure.


Assuntos
Síndromes do Olho Seco , Poluentes Ambientais , Masculino , Humanos , Animais , Camundongos , Idoso , Poluentes Ambientais/metabolismo , Camundongos Endogâmicos BALB C , Córnea/metabolismo , Fluoresceína/metabolismo , Lágrimas/metabolismo , Carbono/toxicidade , Carbono/metabolismo , Síndromes do Olho Seco/metabolismo
6.
Adv Sci (Weinh) ; 11(9): e2306268, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38116877

RESUMO

The Fiber Pathogenicity Paradigm (FPP) establishes connections between fiber structure, durability, and disease-causing potential observed in materials like asbestos and synthetic fibers. While emerging nanofibers are anticipated to exhibit pathogenic traits according to the FPP, their nanoscale diameter limits rigidity, leading to tangling and loss of fiber characteristics. The absence of validated rigidity measurement methods complicates nanofiber toxicity assessment. By comprehensively analyzing 89 transcriptomics and 37 proteomics studies, this study aims to enhance carbon material toxicity understanding and proposes an alternative strategy to assess morphology-driven toxicity. Carbon materials are categorized as non-fibrous, high aspect ratio with shorter lengths, tangled, and rigid fibers. Mitsui-7 serves as a benchmark for pathogenic fibers. The meta-analysis reveals distinct cellular changes for each category, effectively distinguishing rigid fibers from other carbon materials. Subsequently, a robust random forest model is developed to predict morphology, unveiling the pathogenicity of previously deemed non-pathogenic NM-400 due to its secondary structures. This study fills a crucial gap in nanosafety by linking toxicological effects to material morphology, in particular regarding fibers. It demonstrates the significant impact of morphology on toxicological behavior and the necessity of integrating morphological considerations into regulatory frameworks.


Assuntos
Amianto , Carbono , Carbono/toxicidade , Proteômica , Amianto/química , Perfilação da Expressão Gênica , Relação Estrutura-Atividade
7.
Sensors (Basel) ; 23(16)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37631603

RESUMO

A microbial fuel cell (MFC) biosensor with an anode as a sensing element is often unreliable at low or significantly fluctuating organic matter concentrations. To remove this limitation, this work demonstrates capillary action-aided carbon source delivery to an anode-sensing MFC biosensor for use in carbon-depleted environments, e.g., potable water. First, different carbon source delivery configurations using several thread types, silk, nylon, cotton, and polyester, are evaluated. Silk thread was determined to be the most suitable material for passive delivery of a 40 g L-1 acetate solution. This carbon source delivery system was then incorporated into the design of an MFC biosensor for real-time detection of toxicity spikes in tap water, providing an organic matter concentration of 56 ± 15 mg L-1. The biosensor was subsequently able to detect spikes of toxicants such as chlorine, formaldehyde, mercury, and cyanobacterial microcystins. The 16S sequencing results demonstrated the proliferation of Desulfatirhabdium (10.7% of the total population), Pelobacter (10.3%), and Geobacter (10.2%) genera. Overall, this work shows that the proposed approach can be used to achieve real-time toxicant detection by MFC biosensors in carbon-depleted environments.


Assuntos
Fontes de Energia Bioelétrica , Carbono/toxicidade , Cloretos , Eletrodos , Formaldeído , Substâncias Perigosas
8.
Mikrochim Acta ; 190(8): 331, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37501043

RESUMO

A novel fluorescent nanoprobe CQDs-O-Acryl has been designed and synthesized to directly and accurately identify Cys over other biothiols in PBS (10 mM, pH 7.4) buffer. The carbon quantum dots (CQDs-OH) (λex/em maxima = 495/525 nm) were fabricated by a solvothermal method using resorcinol as the carbon source. The CQDs-O-Acryl was achieved through covalently grafting the acryloyl group on the surface of carbon quantum dots by nuclear reaction based on static quenching. The structure and morphology of CQDs-OH and CQDs-O-Acryl have been characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and UV-vis absorption spectroscopy. Upon the addition of Cys, the ester bond of CQDs-O-Acryl has been broken, and the free CQDs were released by conjugated addition and cyclization reactions successively, emitting strong green fluorescence at 525 nm (λex = 495 nm). Under the optimized conditions, CQDs-O-Acryl exhibited good sensing of Cys within the range 0.095-16 µM (the LOD of 0.095 µM). Due to the high sensitivity, reliability, fast fluorescence response (10 min), and low toxicity of CQDs-O-Acryl, it was successfully applied to fluorescence imaging of Cys in A549 cells and zebrafish.


Assuntos
Cisteína , Corantes Fluorescentes , Animais , Corantes Fluorescentes/toxicidade , Corantes Fluorescentes/química , Peixe-Zebra , Reprodutibilidade dos Testes , Carbono/toxicidade , Carbono/química
9.
Part Fibre Toxicol ; 20(1): 20, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37202804

RESUMO

BACKGROUND: Airborne pollution particles have been shown to translocate from the mother's lung to the fetal circulation, but their distribution and internal placental-fetal tissue load remain poorly explored. Here, we investigated the placental-fetal load and distribution of diesel engine exhaust particles during gestation under controlled exposure conditions using a pregnant rabbit model. Pregnant dams were exposed by nose-only inhalation to either clean air (controls) or diluted and filtered diesel engine exhaust (1 mg/m3) for 2 h/day, 5 days/week, from gestational day (GD) 3 to GD27. At GD28, placental and fetal tissues (i.e., heart, kidney, liver, lung and gonads) were collected for biometry and to study the presence of carbon particles (CPs) using white light generation by carbonaceous particles under femtosecond pulsed laser illumination. RESULTS: CPs were detected in the placenta, fetal heart, kidney, liver, lung and gonads in significantly higher amounts in exposed rabbits compared with controls. Through multiple factor analysis, we were able to discriminate the diesel engine exposed pregnant rabbits from the control group taking all variables related to fetoplacental biometry and CP load into consideration. Our findings did not reveal a sex effect, yet a potential interaction effect might be present between exposure and fetal sex. CONCLUSIONS: The results confirmed the translocation of maternally inhaled CPs from diesel engine exhaust to the placenta which could be detected in fetal organs during late-stage pregnancy. The exposed can be clearly discriminated from the control group with respect to fetoplacental biometry and CP load. The differential particle load in the fetal organs may contribute to the effects on fetoplacental biometry and to the malprogramming of the fetal phenotype with long-term effects later in life.


Assuntos
Placenta , Emissões de Veículos , Animais , Gravidez , Coelhos , Feminino , Emissões de Veículos/toxicidade , Carbono/toxicidade , Pulmão , Fígado
10.
Talanta ; 259: 124520, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37058943

RESUMO

Glutathione (GSH) is present in almost every cell in the body and plays various integral roles in many biological processes. The Golgi apparatus is a eukaryotic organelle for the biosynthesis, intracellular distribution, and secretion of various macromolecules; however, the mechanism of GSH in the Golgi apparatus has not been fully elucidated. Here, specific and sensitive sulfur-nitrogen co-doped carbon dots (SNCDs) with orange-red fluorescence was synthesized for the detection of GSH in the Golgi apparatus. The SNCDs have a Stokes shift of 147 nm and excellent fluorescence stability, and they exhibited excellent selectivity and high sensitivity to GSH. The linear response of the SNCDs to GSH was in the range of 10-460 µM (LOD = 0.25 µΜ). More importantly, we used SNCDs with excellent optical properties and low cytotoxicity as probes, and successfully realized golgi imaging in HeLa cells and GSH detection at the same time.


Assuntos
Corantes Fluorescentes , Pontos Quânticos , Humanos , Células HeLa , Corantes Fluorescentes/toxicidade , Pontos Quânticos/toxicidade , Carbono/toxicidade , Glutationa , Complexo de Golgi , Nitrogênio , Limite de Detecção
11.
Anal Chim Acta ; 1245: 340847, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36737134

RESUMO

Fluorescent carbon dots have been highly reported nanomaterials in recent times because of their excellent physio-chemical properties and various field of applications. Herein, a one-step hydrothermal approach was used to synthesize high biocompatible nitrogen and sulfur co-doped carbon dots, and examined their chemical sensing (Hg2+) and biological imaging properties. The N,S-CDs exhibited blue light, demonstrating a high quantum yield of up to 44.5% and excitation-independent fluorescent characteristics. Cytotoxicity was observed by CCK-8 assay using T-ca cells as a target source. Cell viability was recorded over 80% even after 7 days of treatment with a concentration up to 400 µg/mL, indicating low-toxicity of N,S-CDs. Notably, the bright blue fluorescence of N,S-CDs was quenched by introducing toxic Hg2+ ions into the solution. The detection limit was calculated to be about ∼3.5 nM, which is quite impressive compared to previous reports. Because of their low-toxicity, nano-size, and environment friendly properties, N,S-CDs could be excellent fluorescent agents for bio-imaging applications. The biological stability of fluorescent N,S-CDs was tested over time, and the findings were significant even after 8 days of incubation with T-ca cells. Because of good biocompatibility and bright fluorescence, N,S-CDs were suitable for in vivo imaging.


Assuntos
Mercúrio , Pontos Quânticos , Carbono/toxicidade , Carbono/química , Pontos Quânticos/toxicidade , Pontos Quânticos/química , Nitrogênio/química , Enxofre/química , Corantes Fluorescentes/toxicidade , Corantes Fluorescentes/química , Mercúrio/toxicidade
12.
Molecules ; 27(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36557861

RESUMO

Carbon dots (CDs) are carbon-based zero-dimensional nanomaterials that can be prepared from a number of organic precursors. In this research, they are prepared using fat-free UHT cow milk through the hydrothermal method. FTIR analysis shows C=O and C-H bond presence, as well as nitrogen-based bond like C-N, C=N and -NH2 presence in CDs, while the absorption spectra show the absorption band at 280 ± 3 nm. Next, the Biuret test was performed, with the results showing no presence of unreacted proteins in CDs. It can be said that all proteins are converted in CDs. Photo luminance spectra shows the emission of CDs is 420 nm and a toxicity study of CDs was performed. The Presto Blue method was used to test the toxicity of CDs for murine hippocampal cells. CDs at a concentration of 4 mg/mL were hazardous independent of synthesis time, while the toxicity was higher for lower synthesis times of 1 and 2 h. When the concentration is reduced in 1 and 2 h synthesized CDs, the cytotoxic effect also decreases significantly, ensuring a survival rate of 60-80%. However, when the synthesis time of CDs is increased, the cytotoxic effect decreases to a lesser extent. The CDs with the highest synthesis time of 8 h do not show a cytotoxic effect above 60%. The cytotoxicity study shows that CDs may have a concentration and time-dependent cytotoxic effect, reducing the number of viable cells by 40%.


Assuntos
Pontos Quânticos , Animais , Camundongos , Pontos Quânticos/toxicidade , Pontos Quânticos/química , Leite , Carbono/toxicidade , Carbono/química , Corantes Fluorescentes/química
13.
Mikrochim Acta ; 190(1): 12, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36478524

RESUMO

R-CDAs have been synthesized in a one-pot solvothermal procedure starting from 3,4-diaminobenzoic acid in an acidic medium. Transmission electron microscopy (TEM) revealed that R-CDAs nanoparticles exhibited a much larger diameter of 7.2-28.8 nm than traditional monodisperse carbon dots. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR) revealed the presence of polar functional groups (hydroxyl, amino, carboxyl) on the surface of R-CDAs. Upon excitation with visible light (550 nm), R-CDAs emit stable, red fluorescence with a maximum at 610 nm. Under the optimum conditions, Cu2+ ions quench the fluorescence of this probe, and the signal is linear in a concentration range of copper ions between 5 and 600 nM with the detection limit of only 0.4 nM. Recoveries from 98.0 to 105.0% and relative standard deviations (RSD) from 2.8 to 4.5% have been obtained for detection of Cu2+ in real water samples. Furthermore, the R-CDAs fluorescent probe showed negligible cytotoxicity toward HeLa cells and good bioimaging ability, suggesting its potential applicability as a diagnostic tool in biomedicine.


Assuntos
Carbono , Corantes Fluorescentes , Humanos , Corantes Fluorescentes/toxicidade , Carbono/toxicidade , Células HeLa , Espectroscopia de Infravermelho com Transformada de Fourier
14.
Mikrochim Acta ; 190(1): 21, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36512123

RESUMO

N-doped carbon quantum dots (N-CDs) with polyaminobenzene hydrazine as precursor were prepared by solvothermal method for the monitoring of pH fluctuation in HeLa cells via fluorescence imaging. The N-CDs show two emission wavelengths at 582 and 640 nm under different pH with two excitation wavelengths. The fluorescence intensity at 640 nm (λex = 520 nm) and the ratio of F582/F640 (λex = 470 nm) linearly increase with pH in the range of 2.4 ~ 3.6 (R2 = 992) and 5.6 ~ 7.6 (R2 = 0.987), respectively. The sensor exhibits high sensitivity and reversibility and anti-interference capability, thus enabling sensing pH change in intracellular environment in real time, as demonstrated by successful monitoring of intracellular pH fluctuation during H2O2 stimulation in HeLa cells.


Assuntos
Citrus sinensis , Pontos Quânticos , Humanos , Pontos Quânticos/toxicidade , Carbono/toxicidade , Células HeLa , Peróxido de Hidrogênio , Concentração de Íons de Hidrogênio , Imagem Óptica
15.
Acc Chem Res ; 55(23): 3312-3321, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36417545

RESUMO

Fluorescence is the emission of light following photon absorption. This optical phenomenon has many applications in daily life, such as in LED lamps, forensics, and bioimaging. Traditionally, small-molecule fluorophores were most common, but the types of molecules and particles with compelling fluorescence properties have expanded. For example, green fluorescent protein (GFP) was isolated from jellyfish and won the Nobel prize in 2008 due to its significant utility as a fluorescent biomarker. Using the intrinsic fluorescence of GFP, many previously invisible biological processes and substances can now be observed and studied. Other fluorescent materials have also been developed, greatly expanding the potential applications. Semiconductor quantum dots (QDs), which have bright fluorescence and a narrow bandwidth, are a popular choice for display technologies. However, QDs are made of heavy metal elements such as Cd and Se, which pose potential safety concerns to the environment and human health. Thus, new fluorescent organic materials are being developed to mitigate the toxicological concerns while maintaining the QD advantages.One type of new material attracting great attention as an environmentally friendly substitute for semiconductor QDs is carbon dots (CDs). CDs have been developed with strong fluorescence, good photostability, and low toxicity using a variety of precursors, and some synthesis processes have good potential for scale-up. However, since they are made of a variety of materials and through different methods, the structure and properties of CDs can differ from preparation to preparation. There are three major types of CDs: graphene quantum dots (GQDs), carbon quantum dots (CQDs), and amorphous or polymeric carbon dots (PCDs). This Account focuses on PCDs and their unique properties by comparing it with other types of CDs. The synthesis processes, fluorescence properties, fluorescence mechanisms, and toxicity are discussed below with an emphasis on the distinct attributes of PCDs.PCDs can be synthesized from small molecules or polymers. They have an amorphous or cross-linked polymer structure with bright fluorescence. This fluorescence is possibly due to cross-link-enhanced emission or clusteroluminescence that arises from the through-space interactions of heteroatomic-rich functional groups. Other fluorescence mechanisms of CDs, including distinct contributions from the carbon core and surface states, may also contribute. The toxicological profiles of CDs are influenced by the chemical composition, surface functionalization, and light illumination. CDs are generally thought to be of low toxicity, and this can be further improved by removing toxic byproducts, functionalizing the surface, and reducing light exposure to minimize the generation of reactive oxygen species.


Assuntos
Carbono , Pontos Quânticos , Humanos , Carbono/toxicidade , Carbono/química , Pontos Quânticos/toxicidade , Pontos Quânticos/química , Corantes Fluorescentes/química , Fluorescência , Polímeros
16.
Nanotoxicology ; 16(6-8): 733-756, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36403151

RESUMO

Carbon nanomaterials are an inventive class of materials with wide applications in state-of-the-art bioimaging and therapeutics. They allow a broad range of tunable and integrated advantages of structural flexibility, chemical and thermal stability, upright electrical conductivity, and the option of scale-up and mass production. In the context of nanomedicine, carbon nanomaterials have been used extensively to mitigate the serious side effects of conventional chemotherapy and also to enable early cancer diagnostics, given their wide range of tunable properties. A class of carbon nanomaterials, called carbon dots (CDs) are small carbon-based nanoparticles and have been a valued discovery due to their photoluminescence, low photobleaching, and high surface area to mass ratio. The process of producing these CDs had so far been a high energy demanding process involving wet chemistry for purification. A one-step tunable production of luminescent CDs from fuel rich combustion reactors was recently presented by our group. In this paper, we explore the effects of these yellow luminescent combustion-generated CDs in MCF7 adenocarcinoma and MCF10a normal breast epithelial cells. We observed that these CDs, also at nontoxic doses, can affect basic cellular functions, such as cell cycle and proliferation; induce substantial changes on the physical parameters of the plasma membrane; and change the overall appearance of a cell in terms of morphology.


Assuntos
Nanoestruturas , Pontos Quânticos , Pontos Quânticos/toxicidade , Pontos Quânticos/química , Carbono/toxicidade , Carbono/química , Nanoestruturas/química
17.
Biomolecules ; 12(10)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36291560

RESUMO

The inhalation toxicity of carbon nanofibers (CNFs) is not clearly known due to relatively few related studies reported. An acute inhalation study and short-term inhalation study (5 days) were therefore conducted using Sprague-Dawley rats. In the acute inhalation study, the rats were grouped and exposed to a fresh air control or to low (0.238 ± 0.197), moderate (1.935 ± 0.159), or high (24.696 ± 6.336 mg/m3) CNF concentrations for 6 h and thereafter sacrificed at 14 days. For the short-term inhalation study, the rats were grouped and exposed to a fresh air control or low (0.593 ± 0.019), moderate (2.487 ± 0.213), or high (10.345 ± 0.541 mg/m3) CNF concentrations for 6 h/day for 5 days and sacrificed at 1, 3, and 21 days post-exposure. No mortality was observed in the acute inhalation study. Thus, the CNF LC50 was higher than 25 mg/m3. No significant body or organ weight changes were noted during the 5 days short-term inhalation study or during the post-exposure period. No significant effects of toxicological importance were observed in the hematological, blood biochemical, and coagulation tests. In addition, the bronchoalveolar lavage (BAL) fluid cell differential counts and BAL inflammatory markers showed no CNF-exposure-relevant changes. The histopathological examination also found no CNF-exposure-relevant histopathological lesions. Thus, neither acute nor 5 days inhalation exposure to CNFs induced any noticeable toxicological responses.


Assuntos
Nanofibras , Ratos , Animais , Ratos Sprague-Dawley , Carbono/toxicidade , Pulmão/patologia , Administração por Inalação
18.
Environ Res ; 212(Pt E): 113559, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35660407

RESUMO

The revolutionary growth in the usage of carbon quantum dots (CQDs) in different areas have ultimately directed their discharge in the environment and further augmented the exposure of agricultural crops to these released particles. Therefore, the aim of current study is to evaluate the uptake, translocation and phytotoxicity of blue emissive CQDs on Allium sativum plant. The genotoxicity and cytotoxicity assessment of CQDs towards Allium sativum roots was estimated as function of three different concentrations. Considering the role of CQDs in promoting seed germination at 50 ppm concentration, a greenhouse experiment was performed to evaluate their effect on plant growth. Systematic investigations have shown the translocation of CQDs and their physiological response in terms of increased shoot length wherein P-CQDs exhibited more accumulation into Allium sativum parts. Our investigations unfold the opportunity to utilize Aegle marmelos fruit derived CQDs as a growth regulator in variety of other food plants.


Assuntos
Alho , Pontos Quânticos , Carbono/toxicidade , Aberrações Cromossômicas/induzido quimicamente , Desenvolvimento Vegetal , Pontos Quânticos/toxicidade
19.
Environ Pollut ; 307: 119595, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35688387

RESUMO

Black carbon (BC) exports huge amounts of its derived DOM from terrestrial ecosystems annually through a variety of ways (i.e., erosion or runoff migration). The pyrolytic feedstock type and temperature resulted in DOM derived from highly condensed aromatic and non-aromatic BC. However, the behaviors of low aromatic BC-derived DOM at diverse leaching time are poorly understood. In this work, low aromatic BCs were prepared by pyrolysis corn straws at 250 °C, 350 °C and 450 °C. Extraction experiments for four leaching time (6 h, 10 h, 15 h and 21 h) were set up to simulate BC-derived DOM generative process in nature. The phytotoxicity of BC-derived DOM was evaluated via germination index (GI). Spectral characteristics were discussed to analyze the phytotoxicity variations of fluorescence components composition at different time, including the excitation-emission matrix-parallel factor, two-dimensional correlation spectra and Fourier transform infrared spectroscopy. The results suggested that low aromatic BC-derived DOM might contain aromatic phenolic compounds. A longer time contributed to accumulate the complex, hard-to-use organic matters, leading to lower GI. These results would supplement the dynamic spectral characteristics of low aromatic BC-derived DOM and its environmental risks during the leaching process.


Assuntos
Matéria Orgânica Dissolvida , Ecossistema , Carbono/toxicidade , Substâncias Húmicas/análise , Compostos Orgânicos , Fuligem , Espectrometria de Fluorescência/métodos , Espectroscopia de Infravermelho com Transformada de Fourier
20.
Part Fibre Toxicol ; 19(1): 31, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35477523

RESUMO

BACKGROUND: Carbon dot has been widely used in biomedical field as a kind of nanomaterial with low toxicity and high biocompatibility. CDs has demonstrated its unique advantages in assisted drug delivery, target diagnosis and targeted therapy with its small size and spontaneous fluorescence. However, the potential biosafety of CDs cannot be evaluated. Therefore, we focused on the study of liver, the target organ involved in CDs metabolism, to evaluate the risk of CDs in vitro. METHODS AND RESULTS: Liver macrophage KUP5 cells and normal liver cells AML12 cells were incubated in CDs at the same concentration for 24 h to compare the different effects under the same exposure conditions. The study found that both liver cell models showed ATP metabolism disorder, membrane damage, autophagosome formation and lysosome damage, but the difference was that, KUP5 cells exhibited more serious damage than AML12 cells, suggesting that immunogenic cell type is particularly sensitive to CDs. The underlying mechanism of CDs-induced death of the two hepatocyte types were also assessed. In KUP5 cells, death was caused by inhibition of autophagic flux caused by autophagosome accumulation, this process that was reversed when autophagosome accumulation was prevented by 3-MA. AML12 cells had no such response, suggesting that the accumulation of autophagosomes caused by CDs may be specific to macrophages. CONCLUSION: Activation of the TFEB-lysosome pathway is important in regulating autophagy and apoptosis. The dual regulation of ERK and mTOR phosphorylation upstream of TFEB influences the death outcome of AML12 cells. These findings provide a new understanding of how CDs impact different liver cells and contribute to a more complete toxicological safety evaluation of CDs.


Assuntos
Pontos Quânticos , Carbono/toxicidade , Morte Celular , Hepatócitos , Células de Kupffer , Lisossomos , Pontos Quânticos/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...